

 Navigation

 	
 next

 	Introduction to Programming with Python

Introduction to Programming with Python

Table of contents:

	Getting started
	What you’ll need

	What is Python, exactly?

	Using Python

	Simple drawing with turtle
	Introduction

	Drawing a square

	Drawing a rectangle

	More squares

	Variables
	Introduction

	A variable called angle

	The house of santa claus

	Loops
	Introduction

	Drawing a dashed line

	Comments

	More Efficient Squares

	User-defined functions
	Introduction

	A function for a square

	A function for a hexagon

	Functions with parameters
	Introduction

	A parameterized function for a variable size hexagon

	A function of several parameters

	Conditional statements
	Introduction

	Examples

	Giving Directions

	“data munging”

	Conditional Loops
	Introduction

	Turtle prison

	Draw a spiral

	Logical operators
	Introduction

	Negation of a statement

	This and that or something else

	Where to go from here
	Learning Python

	What to do with Python

	License
	Contributors

 Copyright 2012–2014, OpenTechSchool and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	Introduction to Programming with Python

Getting started

What you’ll need

A Python!

If you haven’t yet got python, the latest official installation packages
can be found here:

http://python.org/download/

Python 3 is preferable, being the newest version out!

Note

On Windows, you’ll need to add Python to your %PATH%, so it
can be found by other programs.

When installing Python 3.5 or later, there should be tick box
option to do this on the first page of the installer. Make sure you tick this on.

Otherwise, you can run the script under ToolsScriptswin_add2path.py
where you installed Python.

And a Code Editor

A code editor helps with reading and writing programming code. There are
many around, and it is one of the most personal choices a programmer can
make - Like a tennis-player choosing their racket, or a chef choosing their
favourite knife. To start off with, you’ll just want a basic, easy-to-use one
that doesn’t get in your way, but is still effective at writing python code.
Here are some suggestions for those:

	Atom [https://atom.io]: Windows, Mac & Linux. A new code editor made by Github. It’s
an open-source project and is very easy to add functionality for,
with its packages system.

	Sublime Text [https://www.sublimetext.com/3]: Windows, Mac & Linux. A great all around editor that’s
easy to use. It’s Ctl+B shortcut lets you run the python file you’re working
on straight away.

	Geany [http://www.geany.org/]: Windows, Mac & Linux. A simple editor that doesn’t aim
to be too complicated.

	TextMate [http://macromates.com/]: Mac. One of the most famous code editors for Mac, it used to
be a paid product but has since been open-sourced.

	Gedit [https://projects.gnome.org/gedit/] and Kate [http://kate-editor.org/]: Linux. If you run Linux using Gnome or KDE respectively,
you might already have one of these two installed!

	Komodo Edit [http://www.activestate.com/komodo-edit]: Windows, Mac & Linux. a sleak, free editor based on the
more powerful Komodo IDE.

If you’d like our recommendation, try out Sublime Text 3 first.

Tip

Wordpad, TextEdit, Notepad, and Word are not suitable code editors.

What is Python, exactly?

Ok, so python is this thing called a programming language. It takes text that
you’ve written (usually referred to as code), turns it into instructions for
your computer, and runs those instructions. We’ll be learning how to write code
to do cool and useful stuff. No longer will you be bound to use others’
programs to do things with your computer - you can make your own!

Practically, Python is just another program on your computer. The first thing to
learn is how to use and interact with it. There are in fact many ways to do this;
the first one to learn is to interact with python’s interpreter,
using your operating system’s (OS) console.

A console (or ‘terminal’, or ‘command prompt’) is a textual way to
interact with your OS, just as the ‘desktop’, in conjunction with your mouse,
is the graphical way to interact your system.

Opening a console on Mac OS X

OS X’s standard console is a program called Terminal. Open Terminal by
navigating to Applications, then Utilities, then double-click the
Terminal program. You can also easily search for it in the system
search tool in the top right.

The command line Terminal is a tool for interacting with your
computer. A window will open with a command line prompt message,
something like this:

mycomputer:~ myusername$

Opening a console on Linux

Different linux distributions (e.g Ubuntu, Fedora, Mint) may have different
console programs, usually referred to as a terminal. The exact terminal
you start up, and how, can depend on your distribution. On Ubuntu, you will
likely want to open Gnome Terminal. It should present a prompt like this:

myusername@mycomputer:~$

Opening a console on Windows

Window’s console is called the Command Prompt, named cmd. An easy
way to get to it is by using the key combination Windows+R
(Windows meaning the windows logo button), which should open a
Run dialog. Then type cmd and hit Enter or
click Ok. You can also search for it from the start menu. It should
look like:

C:\Users\myusername>

Window’s Command Prompt is not quite as powerful as its counterparts on Linux
and OS X, so you might like to start the Python Interpreter (see just below)
directly, or using the IDLE program that Python comes with.
You can find these in the Start menu.

Using Python

The python program that you have installed will by default act as something
called an interpreter. An interpreter takes text commands and runs
them as you enter them - very handy for trying things out.

Just type python at your console, hit Enter, and you should
enter Python’s Interpreter.

To find out which version of python you’re running,
instead type python -V in your console to tell you.

Interacting With Python

After Python opens, it will show you some contextual information similar to this:

Python 3.5.0 (default, Sep 20 2015, 11:28:25)
[GCC 5.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

Note

The prompt >>> on the last line indicates that you are now in an
interactive Python interpeter session, also called the “Python shell”.
This is different from the normal terminal command prompt!

You can now enter some code for python to run. Try:

print("Hello world")

Press Enter and see what happens. After showing the results, Python
will bring you back to the interactive prompt, where you could enter
another command:

>>> print("Hello world")
Hello world
>>> (1 + 4) * 2
10

An extremely useful command is help(), which enters a help functionality
to explore all the stuff python lets you do, right from the interpreter.
Press q to close the help window and return to the Python prompt.

To leave the interactive shell and go back to the console (the system shell),
press Ctrl-Z and then Enter on Windows, or Ctrl-D on
OS X or Linux. Alternatively, you could also run the python command exit()!

Exercise

Just above we demonstrated entering a command to figure out some math. Try
some math commands of your own! What operations does python know? Get it
to tell you what 239 and 588 added together, and then squared is.

Solution

Here are some ways you might have got the answer:

>>> 239 + 588
827
>>> 827 * 827
683929

>>> (239 + 588) * (239 + 588)
683929

>>> (239 + 588) ** 2
683929

Running Python files

When you have a lot of python code to run, you will want to save it into
a file, so for instance, you can modify small parts of it (fix a bug) and
re-run the code without having to repeatedly re-type the rest.
Instead of typing commands in one-by-one you can save your code to a
file and pass the file name to the python program.
It will execute that file’s code instead of
launching its interactive interpreter.

Let’s try that! Create a file hello.py in your current directory
with your favorite code editor and write the print command from above. Now
save that file. On Linux or OS X, you can also run touch hello.py to create
an empty file to edit. To run this file with python, it’s pretty easy:

$ python hello.py

Note

Make sure you are at your system command prompt, which will have $ or
> at the end, not at python’s (which has >>> instead)!

On Windows you should also be able to double-click the Python file to run it.

When pressing Enter now, the file is executed and you see the output
as before. But this time, after Python finished executing all commands from
that file it exits back to the system command prompt, instead of going back
to the interactive shell.

And now we are all set and can get started with turtle!

Note

Not getting “Hello world” but some crazy error about “can’t open
file” or “No such file or directory?” Your command line might not be
running in the directory that you saved the file in. You can change
the working directory of your current command line with the
cd command, which stands for “change directory”. On Windows,
you might want something like:

> cd Desktop\Python_Exercises

On Linux or OS X, you might want something like:

$ cd Desktop/Python_Exercises

This changes to the directory Python_Exercises under the Desktop folder
(yours might be somewhere different). If you don’t know the location
of the directory where you saved the file, you can simply drag the
directory to the command line window. If you don’t know which
directory your shell is currently running in use pwd,
which stands for “print working directory”.

Warning

When playing around with turtle, avoid naming your file turtle.py
— rather use more appropriate names such as square.py or
rectangle.py. Otherwise, whenever you refer to turtle, Python
will pick up your file instead of the standard Python turtle module.

 Copyright 2012–2014, OpenTechSchool and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	Introduction to Programming with Python

Simple drawing with turtle

Introduction

“Turtle” is a python feature like a drawing board, which lets you command
a turtle to draw all over it!

You can use functions like turtle.forward(...) and turtle.left(...)
which can move the turtle around.

Before you can use turtle, you have to import it. We recommend playing around
with it in the interactive interpreter first, as there is an extra bit of work
required to make it work from files. Just go to your terminal and type:

import turtle

[image: _images/default.png]

Note

Not seeing anything on Mac OS? Try issuing a command like
turtle.forward(0) and looking if a new window opened behind your
command line.

Note

Do you work with Ubuntu and get the error message “No module named
_tkinter”? Install the missing package with sudo apt-get install
python3-tk

Note

While it might be tempting to just copy and paste what’s written on
this page into your terminal, we encourage you to type out each command.
Typing gets the syntax under your fingers (building that muscle memory!)
and can even help avoid strange syntax errors.

turtle.forward(25)

[image: _images/forward.png]
turtle.left(30)

[image: _images/left.png]
The turtle.forward(...) function tells the turtle to move forward
by the given distance. turtle.left(...) takes a number of degrees which you
want to rotate to the left. There is also turtle.backward(...) and
turtle.right(...), too.

Note

Want to start fresh? You can type turtle.reset() to clear the drawing
that your turtle has made so far. We’ll go into more detail on
turtle.reset() in just a bit.

The standard turtle is just a triangle. That’s no fun! Let’s make it a turtle
instead with the turtle.shape() command:

turtle.shape("turtle")

So much cuter!

If you put the commands into a file, you might have recognized that the turtle
window vanishes after the turtle finished its movement. (That is because
Python exits when your turtle has finished moving. Since the turtle window
belongs to Python, it goes away as well.) To prevent that, just put
turtle.exitonclick() at the bottom of your file. Now the window stays open
until you click on it:

import turtle

turtle.shape("turtle")

turtle.forward(25)

turtle.exitonclick()

Note

Python is a programming language where horizontal indenting of text is
important. We’ll learn all about this in the Functions chapter later on,
but for now just keep in mind that stray spaces or tabs before any line
of Python code can cause an unexpected error. You could even try adding one
to check how python will complain!

Drawing a square

Note

You’re not always expected to know the anwer immediately. Learn by
trial and error! Experiment, see what python does when you tell it
different things, what gives beautiful (although sometimes
unexpected) results and what gives errors. If you want to keep
playing with something you learned that creates interesting
results, that’s OK too. Don’t hesitate to try and fail and learn
from it!

Exercise

Draw a square as in the following picture:

[image: _images/square.png]
For a square you will probably need a right angle, which is 90 degrees.

Solution

turtle.forward(50)
turtle.left(90)
turtle.forward(50)
turtle.left(90)
turtle.forward(50)
turtle.left(90)
turtle.forward(50)
turtle.left(90)

Note

Notice how the turtle starts and finishes in the same place and
facing the same direction, before and after drawing the
square. This is a useful convention to follow, it makes it easier
to draw multiple shapes later on.

Bonus

If you want to get creative, you can modify your shape with the
turtle.width(...) and turtle.color(...) functions. How do you
use these functions? Before you can use a function you need to know
its signature (for example what to put between the parentheses and what those
things mean.) To find this out you can type help(turtle.color) into the
Python shell. If there is a lot of text, Python will put the help text
into a pager, which lets you page up and down. Press the q
key to exit the pager.

Tip

Are you seeing an error like this:

NameError: name 'turtle' is not defined

when trying to view help? In Python you have to import names before you
can refer to them, so in a new Python interactive shell you’ll need to
import turtle before help(turtle.color) will work.

Another way to find out about functions is to browse the online documentation [http://docs.python.org/3/library/turtle].

Caution

If you misdrew anything, you can tell turtle to erase its drawing board
with the turtle.reset() directive, or undo the most recent step with
turtle.undo().

Tip

As you might have read in the help, you can modify the color with
turtle.color(colorstring). These include but are not limited to
“red,” “green,” and “violet.” See this colours manual [http://www.tcl.tk/man/tcl8.5/TkCmd/colors.htm] for an extensive
list.

If you want to set an RGB value, make sure to run turtle.colormode(255)
first. Then for instance you could run turtle.color(215, 100, 170) to
set a pink colour.

Drawing a rectangle

Exercise

Can you draw a rectangle too?

[image: _images/rectangle.png]

Solution

turtle.forward(100)
turtle.left(90)
turtle.forward(50)
turtle.left(90)
turtle.forward(100)
turtle.left(90)
turtle.forward(50)
turtle.left(90)

Bonus

How about a triangle? In an equilateral triangle (a triangle with all
sides of equal length) each corner has an angle of 60 degrees.

More squares

Exercise

Now, draw a tilted square. And another one, and another one. You can
experiment with the angles between the individual squares.

[image: _images/tiltedsquares.png]
The picture shows three 20 degree turns. But you could try 20, 30 and 40 degree
turns, for example.

Solution

turtle.left(20)

turtle.forward(50)
turtle.left(90)
turtle.forward(50)
turtle.left(90)
turtle.forward(50)
turtle.left(90)
turtle.forward(50)
turtle.left(90)

turtle.left(30)

turtle.forward(50)
turtle.left(90)
turtle.forward(50)
turtle.left(90)
turtle.forward(50)
turtle.left(90)
turtle.forward(50)
turtle.left(90)

turtle.left(40)

turtle.forward(50)
turtle.left(90)
turtle.forward(50)
turtle.left(90)
turtle.forward(50)
turtle.left(90)
turtle.forward(50)
turtle.left(90)

 Copyright 2012–2014, OpenTechSchool and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	Introduction to Programming with Python

Variables

Introduction

Whew. Experimenting with the angles requires you to change three different
places in the code each time. Imagine you’d want to experiment with
all of the square sizes, let alone with rectangles! We can do better than that.

This is where variables come into play: You can tell Python that from now on,
whenever you refer to a variable, you actually mean something else. That concept
might be familiar from symbolic maths, where you would write: Let x be 5.
Then x * 2 will obviously be 10.

In Python syntax, that very statement translates to:

x = 5

After that statement, if you do print(x), it will actually output its value
— 5. Well, can use that for your turtle too:

turtle.forward(x)

Variables can store all sorts of things, not just numbers. A typical
other thing you want to have stored often is a string - a line of text.
Strings are indicated with a starting and a leading " (double quote).
You’ll learn about this and other types, as those are called in Python, and
what you can do with them later on.

You can even use a variable to give the turtle a name:

timmy = turtle

Now every time you type timmy it knows you mean turtle. You can
still continue to use turtle as well:

timmy.forward(50)
timmy.left(90)
turtle.forward(50)

A variable called angle

Exercise

If we have a variable called angle, how could we use that to experiment
much faster with our tilted squares program?

Solution

angle = 20

turtle.left(angle)

turtle.forward(50)
turtle.left(90)
turtle.forward(50)
turtle.left(90)
turtle.forward(50)
turtle.left(90)
turtle.forward(50)
turtle.left(90)

turtle.left(angle)

... and so on

Bonus

Can you apply that principle to the size of the squares, too?

The house of santa claus

Exercise

Draw a house.

[image: _images/house.png]
You can calculate the length of the diagonal line with the Pythagorean
theorem. That value is a good candidate to store in a variable. To calculate
the square root of a number in Python, you’ll need to import the math module
and use the math.sqrt() function. The square of a number is calculated
with the ** operator:

import math

c = math.sqrt(a**2 + b**2)

 Copyright 2012–2014, OpenTechSchool and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	Introduction to Programming with Python

Loops

Introduction

Something you might have noticed: our programs often feature repetition.
Python has a powerful concept it makes use of called looping
(jargon: iteration), which we can use to cut out our reptitive code!
For now, try this easy example:

for name in "John", "Sam", "Jill":
 print("Hello " + name)

This is incredibly helpful if we want to do something multiple times — say,
drawing the individual border lines of a shape — but only want to write that
action once. Here’s another version of a loop:

for i in range(10):
 print(i)

Notice how we write only one line of code using i, but it takes on 10
different values?

The range(n) function can be considered a shorthand
for 0, 1, 2, ..., n-1. If you want to know more about it, you can use
the help in the Python shell by typing help(range).
Use the q key to exit the help again.

You can also loop over elements of your choice:

total = 0
for i in 5, 7, 11, 13:
 print(i)
 total = total + i

print(total)

Write this example out and run it with python, to check it works how you might
expect.

Note

Notice how above, the lines of code that are looped, are the ones that
are indented. This is an important concept in Python - that’s how it
knows which lines should be used in the for loop, and which come
after, as part of the rest of your program. Use four spaces (hitting tab)
to indent your code.

Sometimes you want to repeat some code a number of times, but don’t care about
the value of the i variable; so it can be good practice to replace it
with _ instead. This signifies that we don’t care about its value, or
don’t wish to use it. Here’s a simple example:

for _ in range(10):
 print("Hello!")

You may or may not be wondering about the variable i - why is it used all
the time above? Well, it simply stands for “index” and is one of the most
common variable names ever found in code. But if you are looping over something
other than just numbers, be sure to name it something better! For instance:

for drink in list_of_beverages:
 print("Would you like a " + drink + "?")

This is immediately clearer to understand than if we had used i
instead of drink.

Drawing a dashed line

Exercise

Draw a dashed line. You can move the turtle without the turtle drawing its
movement by using the turtle.penup() function; to tell it to draw again,
use turtle.pendown().

[image: _images/dashed.png]

Solution

for i in range(10):
 turtle.forward(15)
 turtle.penup()
 turtle.forward(5)
 turtle.pendown()

Bonus

Can you make the dashes become larger as the line progresses?

[image: _images/dashedprogressing.png]

Hint

Feeling lost? Inspect i at every run of the loop:

for i in range(10):
 print(i)
 # write more code here

Can you utilize i — commonly called the index variable or loop
variable — to get increasing step sizes?

Comments

In the example above, the line that starts with a # is called a
comment. In Python, anything that goes on a line after # is ignored
by the computer. Use comments to explain what your program does,
without changing the behaviour for the computer. They can also be used
to easily and temporarily disable, or “comment out” some lines of code.

Comments can also go at the end of a line, like this:

turtle.left(20) # tilt our next square slightly

More Efficient Squares

Exercise

The squares we were drawing at the start of this tutorial had a lot of
repeated lines of code. Can you write out a square drawing program in fewer
lines by utilizing loops?

Solution

for _ in range(4):
 turtle.forward(100)
 turtle.left(90)

Bonus

Try nesting loops, by putting one right under (inside) the other, with some
drawing code that’s inside both. Here’s what it can look like:

for ...:
 for ...:
 # drawing code inside the inner loop goes here
 ...
 # you can put some code here to move
 # around after!
 ...

Replace the ...‘s with your own code, and see if you can come up with
something funny or interesting! Mistakes are encouraged!

 Copyright 2012–2014, OpenTechSchool and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	Introduction to Programming with Python

User-defined functions

Introduction

Programmers can deal with some pretty complex and abstract problems, but one
sign of a good programmer is that they’re lazy. They only like to deal with one
thing at a time. So you need a way to break up problems into smaller, discrete
pieces, which lets you focus on just the piece you want to.

Functions are one way to do this abstraction in Python. Let’s take
turtle.reset() for example. reset is a function we call on our turtle, and
it is actually an abstraction for a number of steps, namely:

	Erase the drawing board.

	Set the width and color back to default.

	Move the turtle back to its initial position.

But because all the code is contained in the function, we don’t have to worry about these
details. We can simply call this function, and know it will do what it says for us.

So - how to write your own?

A function can be defined with the def keyword in Python:

def line_without_moving():
 turtle.forward(50)
 turtle.backward(50)

This function we defined is called line_without_moving and it is
an abstraction for two turtle steps - a move forward and a move
backward.

To use it (or as it is usually called, “to call it”), write its name
followed by parentheses:

line_without_moving()
turtle.right(90)
line_without_moving()
turtle.right(90)
line_without_moving()
turtle.right(90)
line_without_moving()

We could write more functions to remove some of the repetition:

def star_arm():
 line_without_moving()
 turtle.right(360 / 5)

for _ in range(5):
 star_arm()

Important

Python uses indenting with whitespace to identify blocks of code
that belong together. In Python a block (like the function
definitions shown above) is introduced with a colon at the end of the
line and subsequent commands are indented — usually 4 spaces
further in. The block ends with the first line that isn’t indented.

This is different to many other programming languages, which use
special characters (like curly braces {}) to group blocks of
code together.

Never use tab characters to indent your blocks, only spaces. You
can – and should – configure your editor to put 4 spaces when you
press the tab key. The problem with using tab characters is that
other python programmers use spaces, and if both are used in the
same file python will read it wrong (in the best place, it will
complain, and in the worst case, weird, hard to debug bugs will
happen).

A function for a square

Exercise

Write a function that draws a square. Could you use this function to improve the
tilted squares program? If you change the program to use a function, is it easier
to experiment with?

Solution

def tilted_square():
 turtle.left(20) # now we can change the angle only here
 for _ in range(4):
 turtle.forward(50)
 turtle.left(90)

tilted_square()
tilted_square()
tilted_square()

bonus: you could have a separate function for drawing a square,
which might be useful later:

def square():
 for _ in range(4):
 turtle.forward(50)
 turtle.left(90)

def tilted_square():
 turtle.left(20)
 square()

etc

A function for a hexagon

Exercise

Write a function that draws a hexagon.

[image: _images/hexagon.png]
Now combine that function into a honeycomb. Just make it with a single layer like this:

[image: _images/honeycomb.png]
Give it a good go!

Hint

Make sure your hexagon function returns your turtle to exactly the same
position and angle it was before it was asked to draw the hexagon. This
makes it easier to reason about.

Solution

def hexagon():
 for _ in range(6):
 turtle.forward(100)
 turtle.left(60)

for _ in range (6):
 hexagon()
 turtle.forward(100)
 turtle.right(60)

You could also put the turtle.forward(100); turtle.right(60) portion in the
function, but you better not call it hexagon in that case. That’s
misleading because it actually draws a hexagon and then advances to a position
where another hexagon would make sense in order to draw a honeycomb. If you
ever wanted to reuse your hexagon function outside of honeycombs, that would be
confusing.

 Copyright 2012–2014, OpenTechSchool and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	Introduction to Programming with Python

Functions with parameters

Introduction

As we shrink down our code and add functions to remove duplication, we
are factorizing it. This is a good thing to do. But the functions we
have defined so far are not very flexible. The variables are defined
inside the function, so if we want to use a different angle or a
distance then we need to write a new function. Our hexagon function can
only draw one size of hexagon!

That is why we need to be able to give parameters, also called
arguments, to the function. This way the variables in the
function can have different values each time we call the function:

Remember how we defined the function line_without_moving() in the previous
section:

def line_without_moving():
 turtle.forward(50)
 turtle.backward(50)

We can improve it by giving it a parameter:

def line_without_moving(length):
 turtle.forward(length)
 turtle.backward(length)

The parameter acts as a variable only known inside the function’s definition.
We use the newly defined function by calling it with the value we want the
parameter to have like this:

line_without_moving(50)
line_without_moving(40)

We have been using functions with parameters since the beginning of the
tutorial with turtle.forward(), turtle.left(), etc...

And we can put as many arguments (or parameters) as we want, separating them
with commas and giving them different names:

def tilted_line_without_moving(length, angle):
 turtle.left(angle)
 turtle.forward(length)
 turtle.backward(length)

A parameterized function for a variable size hexagon

Exercise

Write a function that allows you to draw hexagons of any size you want, each
time you call the function.

Solution

def hexagon(size):
 for _ in range(6):
 turtle.forward(size)
 turtle.left(60)

A function of several parameters

Exercise

Write a function that will draw a shape of any number of sides (let’s assume
greater than two) of any side length. Get it to draw some different shapes.

Here’s an example of drawing shapes with this function:

[image: _images/shapes.png]

Tip

The sum of the external angles of any shape is always 360 degrees!

Solution

def draw_shape(sides, length):
 for _ in range(sides):
 turtle.forward(length)
 turtle.right(360 / sides)

Bonus

It might sound crazy, but it’s perfectly possible to pass a function as a parameter
to another function! Python regards functions as perfectly normal ‘things’, the same as
variables, numbers and strings.

For instance, you could create a shape drawing function which turned one way or another
depending on which turtle function you passed to it - turtle.left or turtle.right.

See if you can implement this!

Note

Passing a function (e.g turtle.left) is different than calling it, which
would instead be written turtle.left(45).

 Copyright 2012–2014, OpenTechSchool and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	Introduction to Programming with Python

Conditional statements

Introduction

So far we have accomplished predefined tasks, but in all honesty we
were accomplishing no better than old-time music boxes following one
set of instructions to the end. What makes programming so much more
powerful are conditional statements. This is the ability to test a
variable against a value and act in one way if the condition is met by
the variable or another way if not. They are also commonly called by
programmers if statements.

To know if a condition is True of False, we need a new type of data:
the booleans. They allow logical operations.
A logic statement or operation can be evaluated to be True or False.
Our conditional statement can then be understood like this:

	if (a condition evaluates to True):

	then do these things only for ‘True’

	else:

	otherwise do these things only for ‘False’.

The condition can be anything that evaluates as True or
False. Comparisons always return True or False, for example
== (equal to), > (greater than), < (less than.)

The else part is optional. If you leave it off, nothing will
happen if the conditional evaluates to ‘False’.

Examples

Here are some examples. You may want to read them over line-by-line
and see what you think they do, or run them to be certain:

condition = True
if condition:
 print("condition met")

if not condition:
 print("condition not met")

direction = -30
if direction > 0 :
 turtle.forward(direction)
else:
 turtle.left(180)
 turtle.forward(-direction)

Giving Directions

Python turtles can be very good at following instructions. Let’s use
the input() function to ask the user for a direction to move
the turtle. To keep things easy we will only accept two instructions:
“left” and “right”.

Note

Using Python 2? The input() function is called raw_input().

It’s much easier to define this as a function, like so:

def move():
 direction = input("Go left or right? ")
 if direction == "left":
 turtle.left(60)
 turtle.forward(50)
 if direction == "right":
 turtle.right(60)
 turtle.forward(50)

Now whenever you use move() you are prompted to choose left or
right.

“data munging”

In this program, the turtle will only respond to exactly left
or right with no variation. Though Left or LEFT might
seem the same as left to a human, that isn’t the case when programming. Python
has a few utility methods to help with that. A string has the methods
.strip(), which removes whitespace and .lower() which makes
everything lower-case.

Here are some examples to print out the effects of .strip() and .lower():

my_variable = " I Am Capitalised"
print(my_variable)
my_stripped = my_variable.strip()
print(my_stripped)
my_lower = my_variable.lower()
print(my_lower)

Try adding direction = direction.strip().lower() to the move()
function, to see the effect. We often call this kind of code “data
munging”, and it is very common.

Can you add some extra input choices to make the turtle draw other
things? How about hexagon?

 Copyright 2012–2014, OpenTechSchool and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	Introduction to Programming with Python

Conditional Loops

Introduction

Conditional loops are way to repeat something while a certain condition
is satisfied, or True. If the condition is always satisfied (never
becomes False), the loop can become infinite.
If the condition starts off false, the code in the loop will never run!
In Python conditional loops are defined with the while statement:

word = ''
sentence = ''
print('Please enter some words.')
print('Include a period (.) when you are finished.')
while '.' not in word:
 word = input('next word: ')
 sentence = word + ' ' + sentence
print()
print('Aha! You said:')
print(sentence)

We call this part of the code the ‘conditional’: '.' not in word

Whether the conditional returns True or not determines whether the code inside
the while loop runs. Of course, it repeats the check every time the loop
is run again.

Read the code above, and see if you can summarise in your head what
it should do (what its final output will be).

Then copy it into a file, say sentence.py and run it - see
exactly what it does. Does that match up with what you thought?

Note

If you are using Python 2, you will need to replace input with
raw_input to run the program correctly.

Turtle prison

Exercise

The turtle has been up to its usual tricks again, robbing liquor
stores and building up huge gambling debts. It’s time for turtle to be
put into a cell that it can’t get out of.

Let’s make a new version of forward(). One that will turn the turtle
around if it tries to go further than 100 from the origin. We’ll need
a while loop, and some new turtle functions:

	turtle.distance(0, 0) - Returns the distance of the turtle from
the origin (0, 0)

	turtle.towards(0, 0) - Returns the angle to get back to origin (0, 0)

	turtle.setheading(angle) - Directly sets the turtle’s direction

You could try playing with a turtle in the interpreter and using these
functions to check exactly what they do, if you like.

Now you will need to implement the prison logic using these turtle
functions, perhaps a while loop and a bit of conditional logic.
It’s a bit of a stretch but keep at it! Don’t be afraid to talk it out
with a coach or another student.

Solution

def forward(distance):
 while distance > 0:
 if turtle.distance(0,0) > 100:
 angle = turtle.towards(0,0)
 turtle.setheading(angle)
 turtle.forward(1)
 distance = distance - 1

Draw a spiral

Loops can be interrupted with the break statement. This is
especially useful if you write an infinite loop, which is a loop
where the conditional is always True.

Exercise

Write a while loop with a condition that is always True
to draw a spiral. Interrupt the loop when the turtle reaches a certain distance
from the center. Use the function turtle.distance(x, y) to get the
turtle’s distance to the point defined by the coordinates x and y.

To do this you will need the turtle.xcor() and turtle.ycor()
functions, which return the position of the turtle in X and Y axes
respectively.

Note

To draw a spiral, the turtle has to rotate by a constant value and move
forward by an increasing value.

Solution

def draw_spiral(radius):
 original_xcor = turtle.xcor()
 original_ycor = turtle.ycor()
 speed = 1
 while True:
 turtle.forward(speed)
 turtle.left(10)
 speed += 0.1
 if turtle.distance(original_xcor, original_ycor) > radius:
 break

Bonus

Can you make a conditional for this loop, so you don’t need the
infinite loop while True or the break? Which version do you find
easier to understand?

 Copyright 2012–2014, OpenTechSchool and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	Introduction to Programming with Python

Logical operators

Introduction

Conditionals are a nice way to make decisions by asking if something equals
True or not. But often one condition is not enough.
We may want to take the opposite of our result. Or for instance if we want to
make a decision upon turtle.xcor() and turtle.ycor() we have to combine
them. This can be done with logical operators.

Negation of a statement

If we want something to be False we can use not. It is a logical
operator:

x = False
if not x :
 print("condition met")
else:
 print("condition not met")

Exercise

The turtle gives us a useful function to know if it is drawing or not:
turtle.isdown(). This function returns True if the turtle is drawing. As
we have seen earlier, the function turtle.penup() and turtle.pendown()
toggle between drawing while moving, or just moving without a trace.

Can we write a function that only goes forward if the pen is up?

Solution

def stealthed_forward(distance):
 if not turtle.isdown():
 turtle.forward(distance)

This and that or something else

Two easy to understand operators are and and or. They do exactly what
they sound like::

if 1 < 2 and 4 > 2:
 print("condition met")

if 1 > 2 and 4 < 10:
 print("condition not met")

if 4 < 10 or 1 < 2:
 print("condition met")

You are not restricted to one logical operator. You can combine as may as you
want.

Exercise

Earlier we put the turtle in a circular prison. This time let’s make
it a box. If the turtle goes more than 100 in the X or Y axis then
we turn the turtle back around to the center.

Solution

def forward(distance):
 while distance > 0:
 if (turtle.xcor() > 100
 or turtle.xcor() < -100
 or turtle.ycor() > 100
 or turtle.ycor() < -100):
 turtle.setheading(turtle.towards(0,0))
 turtle.forward(1)
 distance = distance - 1

 Copyright 2012–2014, OpenTechSchool and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	Introduction to Programming with Python

Where to go from here

Learning Python

Hopefully this tutorial has tought you just enough python to get you on your
feet. However, there is much more that you can learn! Even professional
programmers will always be trying to learn more about their language and
how to code excellently with it.

Books and Tutorials

If you like learning from a book, there are heaps of good ones, and even many
that can be read freely on the web!

	OTS Python Portal [http://python.opentechschool.org/] - Check the rest of our tutorials, and look out for
future workshops!

	O’Reilly [http://shop.oreilly.com/category/browse-subjects/programming/python.do] publishes hundreds of books and ebooks, on python and many other
technologies (check out Learning Python, 5th edition).

	Invent with Python [http://inventwithpython.com/] takes a practical approach, with three different ebooks
that can be read online for free.

	Learn Python the Hard Way [http://learnpythonthehardway.org/] is a step by step full tutorial on the language,
done in a unique style.

	Dive into Python 3 [http://getpython3.com/diveintopython3/] is another great book available online for free!

	Last but not least, python.org has Its own tutorial! [http://docs.python.org/3/tutorial/]

Online learning courses

You wouldn’t believe what you can do on the web these days. There are many
courses on programming around!

	Edx [https://www.edx.org/course-list/allschools/computer%20science/allcourses] - with top universities like Stanford, MIT, Harvard and Berkley giving
out interactive courses for free, it’s hard to turn this down. You’ll have
to look for ones coming up soon!

	Coursera [https://www.coursera.org/courses?orderby=upcoming&cats=cs-theory,cs-systems,cs-programming,cs-ai] is very similar to Edx, with even more courses, and some that
can be taken at any time.

	CodeAcademy [http://www.codecademy.com/] - luckily this one has a python-specific course that can
be taken at any time, and many other practical language courses.

What to do with Python

Well, that’s a tough one! See, practically anything you can think of involving
some electronics - from your TV remote, to a smartphone, to the backend of a
popular web service, to the scheduling of airport landings, to the software
you use everyday - it all involves some programming somewhere!

And not only is it a big field practically, but also technically and
academically. As soon as you have a basic understanding of a general language
like python, you can start working on all manner of subjects: web frontends,
web backend services, data analysis and statistics, Artificial Intelligence,
GUI design, robotics, software development of all kinds, online transactions,
automation of everything, and many more.

We wouldn’t blame if that all sounds daunting, so here’s some practical advice,
that takes advantage of how wide a field “programming” is:

Apply your new skills to whatever you’re passionate about.

Whether that’s starting a new business, helping you do some task involving data
faster, putting up an online site, calculating advantages in a game you play,
creating art and music, or anything else, finding out how to use programming to
help with whatever floats your boat will make learning much more exciting and
relevant. Feel free to ask someone more experienced if you have no idea where
to start, but always mention what makes you tick!

 Copyright 2012–2014, OpenTechSchool and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 previous

 	Introduction to Programming with Python

License

This work is licensed under the Creative Commons Attribution-ShareAlike
3.0 Unported License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to
Creative Commons, 444 Castro Street, Suite 900, Mountain View,
California, 94041, USA.

[image: cc-by-sa]

Contributors

The following people have contributed to this material, in alphabetical order:

	Alec Clews

	Alper Çugun

	Amélie Anglade

	Andreas Hug

	Angus Gratton

	Aur Saraf

	Benjamin Kampmann

	Benoît Bleuzé

	Charles Pletcher

	Haiko Schol

	julius.jann

	leenagupte

	Markus Zapke-Gründemann

	Matt Iversen

	Matthew Iversen

	OKso

	Robert Lehmann

	Robert Schwarz

	sorrymak

	staeff

	Steven Farlie

(This list is automatically generated from our source repository [https://github.com/opentechschool/python-beginners].)

The material is legally maintained by

OpenTechSchool e.V.

c/o co.up

Adalbertstr. 8

10999 Berlin, Germany

 Copyright 2012–2014, OpenTechSchool and contributors.
 Created using Sphinx 1.3.5.

 _static/down-pressed.png

_static/file.png

_images/house.png

_static/plus.png

_static/ajax-loader.gif

_images/left.png

_images/hexagon.png

_static/comment.png

_images/default.png

_static/comment-bright.png

_images/square.png

_static/up-pressed.png

_images/forward.png

_images/shapes.png

search.html

 Navigation

 		Introduction to Programming with Python »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012–2014, OpenTechSchool and contributors.
 Created using Sphinx 1.3.5.

_images/rectangle.png

_static/down.png

_images/dashedprogressing.png

_images/dashed.png

_images/tiltedsquares.png

_images/cc-by-sa.png
) ®O

_static/comment-close.png

_static/up.png

_images/honeycomb.png

_static/minus.png

